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Adaptive control is often applied to a disturbed system whose parameters may be
uncertain or even time varying. In this paper, two standard adaptive feedback controllers,
featuring both system identi"cation and control in real time, are compared for active sound
and vibration attenuation. The two adaptive feedback controllers to be compared are the (i)
self-tuning regulator and (ii) plant disturbance canceler. In the plant disturbance canceler,
two methods for the controller tuning and three dithering schemes for plant model
identi"cation are considered. A numerical simulation for active vibration isolation and
experimental investigations for active sound and vibration attenuation of the two adaptive
feedback controllers are carried out. Both numerical and experimental results show that the
self-tuning regulator outperforms the plant disturbance canceler in terms of much more
amounts of sound and vibration attenuation and much faster convergence rate.
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1. INTRODUCTION

Feedback control with the "xed controller has been of popular use for a long time and its
successful applications can be found in a wide variety of engineering disciplines. The
controller is usually designed based on the knowledge of the controlled process (plant) and
the known operating conditions. However, control with a "xed controller may not always
give satisfactory performance as was originally designed. The di$culty arises because of the
possible changing properties of controlled processes and their signals, parameter
uncertainty, existence of unknown disturbances, and so on. Adaptive control is therefore
needed in such systems to modify their behavior in accordance with the aforementioned
conditions. It is well known that an adaptive control system can be characterized by two
complementary processes: identi"cation and control. In the process of identi"cation,
a suitable model is developed online that exhibits the same input/output characteristics of
the controlled process. Based on the identi"ed model and control/performance objective,
the controller is updated and then a control action is generated and tested on the plant in
the control process. In other words, the adaptive control system can be viewed as an
automation of plant modelling and controller design, in which the plant model and
controller are updated at each sampling period.

In this paper, two types of adaptive controllers with feedback con"guration are to be
compared for attenuating the undesirable sound or vibration of a disturbed system with
uncertain and/or time-varying parameters. More speci"cally, the adaptive feedback control
system should perform two functions: it learns about the controlled process online and in
the mean time controls its behavior (sound or vibration attenuation in this study). Among
the various types of adaptive feedback controllers that can possibly do the job are the
0022-460X/00/340671#14 $35.00/0 ( 2000 Academic Press
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self-tuning regulator (STR) of Astrom and Wittenmark [1, 2] and the adaptive plant
disturbance canceler (PDC) derived from Widrow and Walach [3] and Shaw [4]. The STR
is the best-known and most popular adaptive control method, which is just a direct
integration of an identi"cation and a controller design algorithm in such a manner that the
two processes proceed sequentially. On the other side, the PDC has various forms of
structures due to the three possible dithering schemes for real-time plant identi"cation and
an o%ine [3] and an online [4] process for the controller tuning. Though the adaptive PDC
has a quite di!erent control architecture as the STR, it functions much the same as the STR,
i.e., real-time plant modelling and controlling. Therefore, it is of interest to compare
performance of the two adaptive control systems in the context of active sound and
vibration control.

This paper is organized as follows. In the next two sections the STR and adaptive PDC
are brie#y introduced, in which adaptive algorithms for real-time plant modelling and
controller tuning are given and the three possible dithering schemes for online plant
identi"cation of the PDC are also included. In the Section 4 both adaptive feedback
controllers are evaluated for active vibration isolation of a linear mechanical system by
numerical simulation. Experimental investigation of the two adaptive feedback controllers
applied to a system composed of two magnetostrictive actuators for active vibration
isolation is conducted in Section 5. Active sound reduction in a duct by the two adaptive
feedback controllers is experimentally examined in Section 6. Finally, conclusions of the
paper are presented in Section 7.

2. DESCRIPTION OF THE SELF-TUNING REGULATOR

In this paper, a linear system with uncertain-but-"xed system parameters is to be
disturbed by an unknown excitation d (t) and to be controlled by an actuating signal u (t).
The two adaptive feedback controllers mentioned previously are thus employed for this
plant disturbance attenuation. Figure 1 depicts the "rst adaptive control architecture, which
is a generic diagram of the STR of Astrom and Wittenmark [1, 2]. The STR works in the
following way. The plant output y (t) contains a response to actuating signal u (t), plus
a response to plant disturbance d (t). A plant estimator, receiving both the actuating signal
and the plant output, estimates the plant parameters. These estimates are then fed to an
automatic design algorithm that sets the parameters of the controller. Note that many
di!erent identi"cation schemes have been developed. Among these the recursive
least-squares (RLS) [5] algorithm has proved to be the most useful and practically
successful self-tuning identi"er. Note also that it is possible to parameterize the plant
directly in terms of the control law parameters. If this is done, the design calculation
necessary to determine the control law becomes essentially trivial. That is, direct adaptive
algorithm is adopted.

In this paper, the plant is to be described by an ARMAX model [5] (i.e., a stochastic
auto-regressive moving-average model):

A(q~1 )y (t)"q~1B(q~1)u (t)#C(q~1 )d (t), (1)

where y (t), u(t), and d(t) are sequences of plant output, actuating signal, and disturbance,
respectively, and A, B, and C are the corresponding polynomials of delay operator q~1 of
appropriate orders. It can be shown [5] that the optimal one-step-ahead predictor for this
model has the following form:

C (q~1)yL (t#1)"a (q~1)y(t)#b (q~1)u (t), (2)



Figure 1. The STR control architecture.
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where
yL (t#1)"y (t#1)!d(t#1) (3)

is the optimal one-step-ahead prediction of y (t). The RLS algorithm for plant
parameter estimation and the minimum variance controller developed in reference [6] are
adopted for the STR. The basic idea behind the controller is to form an adaptive prediction
of the plant output and then to determine the atuating signal by setting the prediction
output equal to the desired output. This is essentially the same philosophy as the
one-step-ahead controller. Speci"cally, the RLS algorithm for system parameter estimation
is as follows:

h(t)"h (t!1)#
P (t!2)/(t!1)

1#/ (t!1)TP (t!2)/(t!1)
[y (t)!yL (t)],

yL (t)"/(t!1)Th (t!1),

P(t!1)"P(t!2)!
P (t!2)/(t!1)/ (t!1)TP (t!2)

1#/ (t!1)TP (t!2)/(t!1)
(4)

with initially
h(0)"0, P (!1)"dI, 0(d(R. (5)

Note that in equation (4)

h (t!1)"[a
1
(t!1),2, a

n
(t!1), b

1
(t!1),2, b

m
(t!1), c

1
(t!1),2, cl (t!1)]T (6)

and

/ (t!1)"[y (t!1),2, y (t!n), u (t!1),2, u(t!m),!yL (t!1),2,!yL (t!l )]T (7)
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are the respective estimated plant parameter vector and regression vector composed of the
selected plant output, actuating signal, and the prediction variables. For the one-step-ahead
controller, the control law based on minimum variance is hence

/ (t)Th (t)"yL (t#1)"y*(t#1) (8)

from which the actuating signal can be obtained:

u (t)"
1

b
1
(t)

[y*(t#1)!a
1
(t)y(t)!2!b

2
(t)u (t!1)!2#c

1
(t)yL (t)#2]. (9)

Note that the desired output y*(t) is of course identically zero for the purpose of plant
disturbance attenuation. The adaptive algorithms of equations (4)}(9) can hence be further
simpli"ed by removing yL (t), yL (t!1),2 and c

1
(t), c

2
(t),2 in / (t) and h (t), since

/ (t)Th (t)"yL (t#1)"y*(t#1)"0 for all t. (10)

Note also that there is a remote possibility of division by zero in equation (9), which can be
avoided by imposing constraint on the size of b

1
(t). This is done as follows, by assuming the

knowledge of the sign and lower bound on the magnitude of b
1
:

If

b
1
(t) signb

1
(Db

1
D
min

(11)

then

b
1
(t)"Db

1
D
min

signb
1
. (12)

Another important practical point is that the actuating signal in equation (9) can call for
large signal due to any large change in system parameters or in y*(t). In this case, the
control law can be modi"ed as follows:

if u (t)'u
max

then u (t)"u
max

,

if u(t)(u
min

then u (t)"u
min

,

where u
max

and u
min

are the speci"ed maximum and minimum actuating signal levels.

3. DESCRIPTION OF THE PLANT DISTURBANCE CANCELER

Another adaptive feedback controller that can attenuate plant disturbance is the plant
disturbance canceler by Widrow and Walach [3], as shown in Figure 2. Online plant
modelling is achieved by introducing an external dither d(t) to the system and the controller
is tuned by an o%ine adaptive algorithm (another dither signal is used). Widrow and
Walach have shown that no other linear system, regardless of its con"guration, can reduce
the variance of the plant disturbance to a level lower than that of Figure 2. In fact, it can be
readily shown [4] that the transfer function from disturbance d(t) to plant output response
y(t) is identically zero if the plant model and controller exactly match the plant actuation
dynamics (namely from u (t) to y(t)) and its inverse, respectively. More speci"cally, the plant



Figure 2. The PDC with o%ine controller tuning and scheme C.

Figure 3. The PDC with online controller tuning and scheme A.
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output response subtracted from the plant model output represents response of the system
due to disturbance only. By utilizing this response, the controller is then used to compute
the negating force u (t) to negate e!ects of the disturbance on the plant. Complete plant
disturbance attenuation can thus be achieved.

There are, however, other forms of adaptive PDC due to the three possible dithering
schemes for plant modelling [3] and an online controller tuning method [4]. These are
shown in Figures 3}5, which are just combinations of the three possible dithering schemes
for plant modelling [3] and an online controller tuning method of "ltered-x LMS algorithm
[4]. Among the three possible dithering schemes for plant modelling, scheme A (see Figure
3) has the simplest form which is e!ective when the controller output is a stationary
stochastic process and an independent dither is added to achieve a desired spectral
character for the plant actuating signal u (t). However, when the controller output is
non-stationary (which is truly the case with the PDC architecture), one may be better o! not
including it at all in the plant modelling process. This is why dithering schemes B and C (see
Figures 4 and 5) are introduced, since both use an independent dither exclusively in e!ecting
the adaptive plant modelling process. The purpose is to assure known stationary statistics
for the input modelling signal. Using scheme B with a white dither, the mean-square error
will be minimized when the impulse response of the adaptive plant model exactly matches
that of the plant over the duration span of the model's impulse response. However, it is



Figure 4. The PDC with online controller tuning and scheme B.

Figure 5. The PDC with online controller tuning and scheme C.
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noted that dithering scheme B has larger minimum mean-square error at the adaptive plant
model output than scheme A has, due to the additional power of the controller output after
propagating through the plant. To compensate for this power, an extra plant model with
controller output as the input signal needs to be included, as shown in scheme C. Scheme
C thus has all the good features of scheme B and overcomes the drawback of having an
increased minimum mean-square error, at the expense of increased system complexity.

To have a common ground for later comparison, the plant model in the PDC of Figures
2}5 is chosen the same ARMAX model as in the STR with the same total number of
auto-regressive (n) and moving-average (m) coe$cients. In addition, the RLS algorithm of
equations (4) and (5) is used for tuning its coe$cients online. For the controller model in the
PDC, a "nite impulse response (FIR) "lter with length l is adopted. As for the controller
tuning, a direct least-mean-square (LMS) algorithm [7] is used o%ine in Figure 2, while
a "ltered-x LMS algorithm is employed online in Figures 3}5 which is re-introduced as
follows [4].
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De"ne the sum of squared error at the plant output at time step k#1 as

E (k#1)"
1

2

k`1
+
i/1

e (i)2"
1

2

k`1
+
i/1

(y*(i)!y(i))2 (13)

which is also the error surface to be minimized. The desired response y* (i) is, of course,
a zero response for plant disturbance attenuation. Minimization of the error function
E(k#1) is done by the method of steepest descent, which makes each change of the weights
proportional to the negative of the gradient vector:

g
j
(k#1)!g

j
(k)"!g

LE(k#1)

Lg
j
(k)

, j"0, 1,2, l!1, (14)

where g
j
(k) are the weights of the controller "lter at time step k and g is a learning rate

controlling the rate of convergence of the adaptive algorithm. Expanding the di!erentiation
by using a series of chains rules yields

g
j
(k#1)"g

j
(k)#g (y* (k#1)!y(k#1))G

u
(z)x (k!j )

"g
j
(k)#g (y* (k#1)!y(k#1))xN (k!j ), (15)

where G
u
(z) is the z-transform of the transfer function of the plant from u (t) to y (t) and x (k)

is the input sequence to the controller. The adaptation process of equation (15) is named
a "ltered-x LMS algorithm where

xN (k!j )"G
u
(z)x (k!j ) (16)

is the "ltered signal of x (k) passing through the plant. However, the signal xN (k) cannot be
obtained in practice. Instead, it can be approximated by passing x (k) through the plant
model "lter as shown in Figures 3}5, since the plant model "lter is assumed to converge
accurately to the plant dynamics as time goes by.

4. A NUMERICAL EXAMPLE FOR VIBRATION ISOLATION

A linear mass}spring}damper system with an attached active dynamic isolator [8] is
taken as the plant under study and is shown in Figure 6. An external disturbance d(t)
applies at the main mass of the system and causes vibratory oscillation at the secondary
mass. The attached mass}spring}damper}actuator system acts as a vibration isolator if the
control goal is to minimize the vibrational amplitude at y(t), namely, the undesirable
vibration originated from the main mass is isolated from reaching the secondary mass. The
power source injected into the actuator for providing control force can be either hydraulic
or electromagnetic power source. For numerical simulation of the system, the following
non-dimensionalized parameters are assumed:

m1"1, m2"0)2, k1"k2"1, b1"b2"0)1 (17)

The two adaptive feedback controllers of STR and PDC described previously are
employed for vibration isolation. For the plant model in both adaptive controllers, an
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ARMAX model with n"m"11 is taken. An FIR "lter with l"150 is chosen as the
controller model in the adaptive PDC. A sampling period set at D¹"0)05 and the
unknown disturbance d(t) for the "rst mode excitation are used for all the following
numerical simulation for vibration isolation. Note that zero initial coe$cients (or weights)
for the plant and controller models are adopted for both adaptive controllers in accordance
with the presumed uncertain system parameters.

The adaptive controllers of Figures 1}5 are employed for active vibration isolation of the
system. Figures 7}11 give the corresponding results for vibration isolation. It is clearly seen
Figure 6. A mass}spring}damper system.

Figure 7. Vibration isolation by STR.

Figure 8. Vibration isolation by PDC with Figure 2 architecture.



Figure 9. Vibration isolation by PDC with Figure 3 architecture.

Figure 10. Vibration isolation by PDC with Figure 4 architecture.

Figure 11. Vibration isolation by PDC with Figure 5 architecture.
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that the STR of Figure 1 has the fastest convergence rate and obtains the most amounts of
vibration isolation, while the PDC of Figure 2 has the worst performance. Note also that
dithering schemes B and C have better overall performance over scheme A in the PDC, as
readily seen in Figures 9}11. This is due to the fact that the controller output of dithering
scheme A is non-stationary resulting in ine!ective plant modelling. Table 1 summarizes the
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"nal amounts of vibration amplitude isolated from reaching to the second mass of the "ve
adaptive controllers at the end of 10 000 time-step running.

For this numerical example, the PDC of Figure 4 characterized by online "ltered-x LMS
algorithm for controller tuning and dithering scheme B for plant modelling gives the best
performance over other PDC con"gurations. Therefore, it is adopted as the PDC that is
going to be compared with the STR for both vibration and sound attenuation in the
following two experiments. This is carried out next.

5. VIBRATION ISOLATION BY USING MAGNETOSTRICTIVE ACTUATOR

In this section, experiment investigations of the two adaptive controllers of STR and
PDC for active vibration isolation by using magnetostrictive actuators are conducted.
Figure 12 depicts the experimental set-up [4], which consists mainly of two
magnetostrictive actuators. Magnetic "eld can induce strain in a magnetostrictive actuator.
Therefore, an unknown magnetic "eld d(t) provided by a power supply is applied to the
lower actuator and vibratory oscillation at y (t) of the upper actuator is recorded. The goal is
to control the upper actuator so that the vibration amplitude y (t) at the #at-top of the upper
actuator is minimized, i.e., to maintain a quiescent #at-top in the presence of base vibrations.

An ARMAX model with n"1 and m"31 is adopted for modelling the actuator
dynamics in both adaptive controllers. An FIR "lter with l"60 is chosen as the controller
TABLE 1

<ibration reductions in dB

STR (Figure 1) PDC (Figure 2) PDC (Figure 3) PDC (Figure 4) PDC (Figure 5)

40 dB 4)07 dB 12)58 dB 22)16 dB 18)56 dB

Figure 12. The experimental set-up for vibration isolation.



Figure 13. Time response for vibration isolation by STR.

Figure 14. Time response for vibration isolation by PDC.
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model in the adaptive PDC. A sampling rate set at 2 kHz and an unknown sinusoidal
disturbance d(t) at 60 Hz are used in the experiment. The control algorithms of the STR and
PDC are digitally implemented in a 586 computer. For the dither signal in the PDC,
a uniformly distributed random signal between $1 V is generated in the control program
for the purpose of plant modelling. Again, zero initial coe$cients (or weights) for the plant
and controller models are adopted in accordance with the presumed unknown plant
parameters. Figures 13 and 14 show the vibration control results of the STR and PDC
respectively. The peak-to-peak vibration amplitude at y(t) is attenuated from 34)56 to 3 km
by the STR and to 18 km by the PDC at the end of 5 s running. Vibration reductions of 21)2
and 5)66 dB, respectively, is obtained by the STR and PDC, thus proving once more the
STR outperforms the PDC in active vibration attenuation.

6. ACTIVE NOISE CONTROL IN DUCTS

In this section, the two adaptive controllers are to be tested on a well-publicized problem
of active noise control in ducts. This problem has been widely studied from the early work of
Leug [9] by feedforward control and work of Olson and May [10] by feedback control to
the work of Eriksson and Allie [11] by both feedforward and feedback control. For
a comprehensive coverage on the study of active control of noise propagating in ducts, the
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reader is referred to the work of Hansen and Snyder [12]. The two adaptive controllers
employed in this paper have such advantages of using only one sensor and one actuator and
can adapt themselves in real time over other control methods appeared in the literature for
this noise reduction problem. It is noted, however, that the sensor and actuator have been
properly placed at locations in the duct where the controllability and observability of the
problem are well preserved.

The experimental set-up for active sound reduction in a duct is shown in Figure 15. An
unknown sinusoidal noise of 120 Hz generated by the primary loudspeaker is to be
attenuated at the measurement microphone by superpositioning an interfering sound wave
generated by the secondary loudspeaker. A low-pass "lter with cut-o! frequency of 300 Hz
is installed after the D/A converter for smoothing the control signal. The sampling rate set
for real-time plant modelling and controlling is 3 kHz. The two adaptive controllers are
implemented in a 586 computer. It is noted that due to the speed limitation of the
microcomputer, the RLS algorithm for plant parameter estimation in equations (4) and (5)
is replaced by a less computation-demanding algorithm of the projection method [5]:

h (t)"h(t!1)#
g/(t!1)

1#/ (t!1)T/ (t!1)
[y (t)!yL (t)], (18)

yL (t)"/ (t!1)Th (t!1),

where the constant g is a learning rate controlling the rate of convergence.
An ARMAX model with n"100 and m"100 for the plant model and an FIR "lter with

l"150 for the controller are chosen in the adaptive PDC, whereas an ARMAX model with
n"50 and m"150 is adopted for the STR in the experiment. Before conducting the
experiment, all the initial coe$cients for the modelling "lters in both adaptive controllers
are set to zeros. For the dither signal in the PDC, a uniformly distributed random signal
between $0)5 V is generated in the control program for the purpose of plant modelling.
Figures 16 and 17 show the noise reduction results of the two adaptive controllers. The
amplitude of the sound pressure in the duct has been reduced from 1)125 to 0)0625 V by
STR and from 0)86 to 0)14 V by PDC at the end of a 4 s operation. Equivalently, the sound
pressure in the duct is reduced an amount of 32)7 dB by the STR and 17 dB by the PDC. It
is shown again that the STR has a much better performance in attenuating the noise in
Figure 15. The experimental set-up for sound reduction in a duct.



Figure 16. Time response for noise reduction by STR.

Figure 17. Time response for noise reduction by PDC.
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a duct than the PDC. Note that this problem of active noise control in a duct had also been
successfully solved by Eriksson and Allie [11] by an adaptive feedforward control, where
two microphones are used and where online controller tuning by the "ltered-x LMS
algorithm and plant modelling by dithering scheme B are employed.

7. CONCLUSIONS

This paper is concerned with the comparison of the performance of two standard
adaptive feedback control systems of the self-tuning regulator and plant disturbance
canceler. Based on the results of both numerical and experimental evaluations of the two
adaptive controllers applied to active noise and vibration control, the following conclusions
are made.

1. The self-tuning regulator outperforms the plant disturbance canceler in terms of
much more amounts of sound and vibration attenuation and much faster convergence
rate in all the examples studied in this paper.

2. For the plant disturbance canceler, online "ne-tuning of the controller with the "ltered-x
LMS algorithm seems superior than using the o%ine tuning process by the direct LMS
algorithm (referring to Figures 8 and 10). The reason is that the online "ltered-x LMS
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algorithms aims to directly minimize the plant output for disturbance attenuation, while
the o%ine process for tuning the controller aims to converge to the inverse plant model.

3. In the plant modelling process of the plant disturbance canceler, dithering schemes B
and C (Figures 4 and 5), though having somewhat complex system con"gurations,
improve on dithering scheme A (Figure 3) for the case when the controller output is
non-stationary.

4. For the numerical example studied, the plant disturbance canceler of Figure 4 with the
online "ltered-x LMS algorithm for controller tuning and dithering scheme B for
plant modelling gives the best performance over other plant disturbance canceler
con"gurations.

Finally, it is pointed out that in this paper the self-tuning regulator and plant disturbance
canceler are applied only to disturbed systems with uncertain-but-"xed system parameters.
It is obvious that these adaptive feedback controllers can certainly be applied to
a time-varying system since both plant modelling and controller tuning can be carried out
online in a real-time scale. Moreover, only one sensor for measuring the system output is
needed in both adaptive feedback controllers, as opposed by some feedforward controllers
where multiple sensors are usually employed.
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